Standard Operating Procedure for trace gas measurements by Proton Transfer Reaction-Mass Spectrometry

Authors

S. Dusanter IMT Nord Europe

R. Holzinger Utrecht Univ.

F. Klein Deutscher Wetterdienst

T. Salameh IMT Nord Europe

M. Jamar IMT Nord Europe

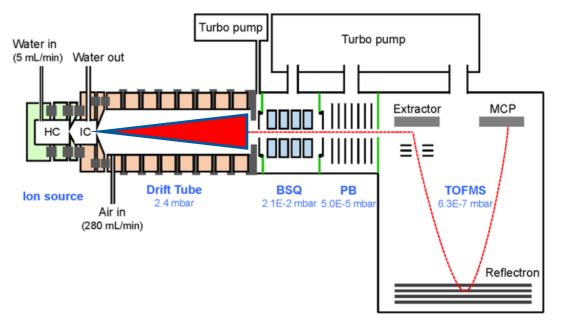
Contributions from

M. MullerIONICON Analytik GmbHC. AmelynckRoyal Belgian Institute& B. Verreykenfor Space Aeronomy

A. MunözI. YlivinkkaUniv. of Helsinki

Published on April 2025

CiGas QA/QC workshop 7-9 April 2025


SOP / Outline of presentation

These guidelines contain the following topics:

1. General introduction			2		
2.	Prir	nciple of the PTR-MS technique	3		
3.	Qu	ality Assurance	7		
	<u>a.</u>	Blank measurements	7		
	<u>b.</u>	Calibration	8		
	<u>c.</u>	Figures of merit	11		
4.	Fie	ld operation	14		
	<u>a.</u>	Sampling	15		
	<u>b.</u>	Operating conditions	16		
	<u>c.</u>	Checking for proper field operation	17		
5.	Dat	a extraction: Retrieval of ambient VMR from mass spectra & reporting	17		
6.	5. References 19				
Anr	nex 1	: Non-exhaustive list of compounds detected at specific m/z values	21		
Anr	nex 2	: Equilibration time required for zeroing the instrument	22		
Anr	Annex 3: NPL gas standard 23				
Anr	nex 4	: Examples of ion transmission curves	24		
Anr	nex 5	: Examples of humidity-dependent sensitivities	25		
Anr	Annex 6: Detector voltage optimization 26				
Anr	Annex 7: Evaluation of primary ion purity and distribution 27				

PTRMS models covered in this SOP

- Ion Source: H_3O^+ & traces of NO⁺, O_2^+
- Drift Tube:

 $R + H_3O^+ \rightarrow RH^+ + H_2O$

- **Ion Transfer Unit:** electrostatic lenses, focusing ion technologies
- Mass Spectrometer: QMS, ToFMS

This SOP covers only:

- **PTR-MS equipped with conventional drift tubes** simple reaction kinetics and energetics
- **Proton transfer using H_3O^+** use of other reagent ions such as O_2^+ and NO⁺ not included

Blank measurements

 $C_{RH^+} = C_{RH^+}^{ambient} - C_{RH^+}^{blank}$

Zero air: VOC free air produced from ambient air using a catalyst @ 350-400°C; a VOC scrubber containing a solid sorbent, or (iii) a cylinder of dry zero air (high purity, 5.0) with a humidification system containing high purity water

Frequency: hourly blanks recommended. At least one blank every six hours to ensure that diurnal variations in instrumental blanks are well captured

Duration: several tens of minutes / check for blank stability

Ref blank values: blanks larger than reported in the table should be investigated

ACTR

3. Quality Assurance

a. Blank measurements

b. Calibration

c. Figures of merit

Table 3: Blank values for PTR-ToFMS

Species	Formula	m/z	Blank values (pptv)*
Methanol	CH₃OH	33.033	30-90
Acetonitrile	C ₂ H ₃ N	42.034	30-110
Acetaldehyde	C ₂ H ₄ O	45.033	40-270
Acetone	C₃H ₆ O	59.049	60-500
Isoprene	C₅H ₈	69.070	20-70
Methyl Ethyl Ketone	C ₄ H ₈ O	73.065	10-70
Benzene	C ₆ H ₆	79.054	20-80
Toluene	C7H8	93.070	20-140
C8-aromatics	C ₈ H ₁₀	107.086	10-110
C9-aromatics	C ₉ H ₁₂	121.101	5-200
Monoterpenes	$C_{10}H_{16}$	81.070 + 137.132	60-100 + 10-50

*Range of values observed on several PTR-ToFMS (m/ Δ m>3000). Reported values are for systems which have been running for at least several days. PTR-QMS may exhibit larger values due to the detection of isobaric species generated in the ion source and desorbing from the inlet material.

Calibration

Provide procedures & recommendations

- 3. Quality Assurance
 - a. Blank measurements

b. Calibration

c. Figures of merit

zero air and calibration gas (<u>few ppb</u>) sampled until a <u>stable plateau</u> is reached for each VOC signal Frequency: once a week (campaign < 2 months) / twice a month (> 2 months)

Kinetic approach

$$VMR = \frac{\frac{C_{RH^+} \times IF_{RH^+} \times FF_{RH^+}}{C_{H_3O^+}} / \left(\frac{T_{RH^+}}{T_{H_2O^+}} \times \frac{d \times k}{K_0 \times N_0} \times \frac{N^2}{E}\right)$$

- Use standard mixture of VOCs w/ known proton transfer rate constants covering the whole mass range interest for ambient measurements
- Calibrate ion transmission at <u>low humidity</u> (e.g. 30% RH)
- Evaluate whether <u>humidity-dependent responses</u> are observed by varying humidity over 30-90% RH
- Characterize <u>fragmentation patterns</u> of species of interest $\rightarrow FF_{RH^+}$

Calibration approach

```
VMR = \frac{\frac{C_{RH^+}}{C_{H_3O^+}} \times 10^6}{S_N(RH^+)}
```

- Use standard mixture of <u>all VOCs</u> targeted for ambient measurements
- Calibrate $S_N(RH^+)$ for all VOCs
- Evaluate whether <u>humidity-dependent responses</u> are observed and, if so, apply the Following procedure for correction

$$VMR = \frac{\frac{C_{RH^+}}{C_{H_3O^+} + Xr \times C_{H_3O^+(H_2O)}} \times 10^6}{S_N(RH^+)}$$

Calibration

Calibration standard from NPL (Worton et al., AMT, 2023)

• SI-traceable

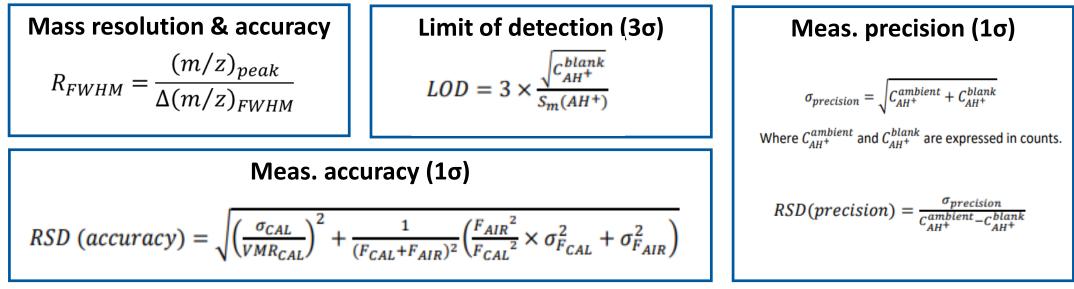
CiGas

- 20 compounds tailored to the requirements of PTR-MS
- Expanded uncertainty: 5.1-10.8%

Component	Amount fraction / (μmol/mol)	Component	Amount fraction / (µmol/mol)
Acetaldehyde	1.35 ± 0.14	1,2,4-trifluorobenzene	0.928 ± 0.047
Methanol	1.69 ± 0.17	Toluene	0.967 ± 0.049
Ethanol	1.11 ± 0.12	Hexamethylcyclotrisiloxane	0.98 ± 0.10
Isoprene	1.13 ± 0.06	<i>m</i> -xylene	0.963 ± 0.049
Acetone	1.07 ± 0.06	Octamethylcyclotetrasiloxane	1.11 ± 0.12
Dimethyl sulfide	1.05 ± 0.06	1,2,4-trimethylbenzene	1.02 ± 0.11
Acetonitrile	1.29 ± 0.13	+3-carene	0.92 ± 0.10
Perfluorotributylamine	0.92 ± 0.10	Decamethylcyclopentasiloxane	1.11 ± 0.12
3-buten-2-one	1.14 ± 0.12	1,2,4-trichlorobenzene	1.04 ± 0.11
Butan-2-one	1.16 ± 0.06	Nitrogen	Balance
Benzene	0.845 ± 0.043	-	-

Formula	Protonated mass(es)	Fragments
N ₂	-	-
CH₄O	33.033	-
CH₃CN	42.034	-
C ₂ H ₄ O	45.033	-
C ₂ H ₆ O	47.050	29.039
C_3H_6O	59.049	
C_2H_6S	63.030	
C ₅ H ₈	69.070	41.039
C₄H ₆ O	71.049	
C ₄ H ₈ O	73.065	
C_6H_6	79.054	
C ₇ H ₈	93.070	
C ₈ H ₁₀	107.086	
C ₉ H ₁₂	121.101	
$C_6H_3F_3$	133.026	
C10H16	137.132,	81.070
$C_6H_3Cl_3$	180.937,	
	182.934,	
	184.931	
C ₆ H ₁₈ Si ₃ O ₃	223.064,	207.032,
	224.063,	208.032,
	225.061	209.029
C ₈ H ₂₄ Si ₄ O ₄	297.083,	281.051,
	298.082,	282.051,
	299.079	283.048
C10H30Si5O5	371.101,	355.070,
	372.101,	356.070,
	372.105,	357.067
	373.098	
	N2 CH4O CH3CN C2H4O C2H6O C2H6O C3H6O C2H6S C2H6S C5H8 C4H6O C6H6 C7H8 C6H6 C7H8 C6H6 C7H8 C6H6 C7H8 C6H10 C9H12 C6H3F3 C10H16 C6H3Cl3 C6H18Si3O3 C6H18Si3O3	mass(es) N2 - CH4O 33.033 CH3CN 42.034 C2H4O 45.033 C2H6O 47.050 C3H6O 59.049 C2H6S 63.030 C3H6O 71.049 C4H6O 73.065 C6H6 79.054 C7H8 93.070 C8H10 107.086 C9H12 121.101 C6H3F3 133.026 C10H16 137.132, C6H3C3 180.937, 182.934, 184.931 C6H3R3G3 223.064, 224.063, 225.061 C8H24Si4O4 297.083, 299.079 210H30Si5O5 371.101, C10H30Si5O5 371.101, 372.105, 372.105,

Table A2.1. Composition of the NPL standard


Figures of merit

- 3. Quality Assurance
 - a. Blank measurements

b. Calibration

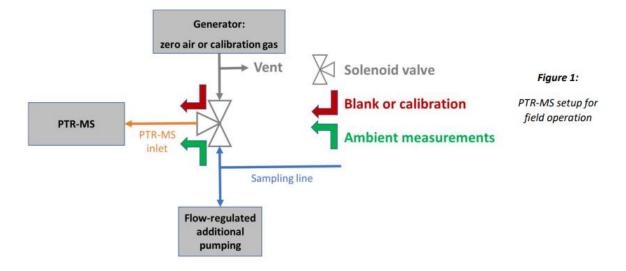
c. Figures of merit

Provide methodologies to compute figures of merit w/ various examples

Field Operation Sampling

Provide recommendations on various aspects

Height: 2-3 different heights should be tested for a significant period of time


Material: coated stainless steel (Silcosteel or SilcoNert[®]1000 and Sulfinert or SilcoNert[®]2000) or polymer after a sufficient passivation time before use (PFA, PTFE)

Sampling line heating: 40-50°C

Flow rate: a few L/min to a few tens of L/min (residence time < a few seconds), turbulent flow preferred

Particle filter: mesh size < 5 μ m unless low volatility compounds are targeted

- 4. Field operation
 - a. Sampling
 - b. Operating conditions
 - c. Checking for proper field operation

Field Operation

Operating conditions

4. Field operation

a. Sampling

b. Operating conditions

c. Checking for proper field operation

Provide settings for operating conditions & requirements for reagent

Table 4: Field operating conditions

Parameter	Range	Comments	
Temperature (°C)	50-60 (up to 80 if IVOC & SVOC are targeted)	This temperature should be kept higher than that of the PTRMS-inlet to prevent condensation. Higher temperature: less memory effects and improved response time, less losses of semi-volatile VOCs.	
Pressure (mbar)	1-4	Higher pressure reduces the diffusion of sampled ai into the ion source in certain PTR-MS models resulting in lower impurity levels of O ₂ ⁺ and NO ⁺	
E/N (Td)	120-140	A higher E/N reduces the abundance of $H_3O^+(H_2O)$ but increases the fragmentation of protonated VOCs	
PTR-MS inlet Sampling flow rate (SCCM)	50-500	A higher flow rate reduces the impact of instrume related contamination on blank signals	
Sampling line flow rate	See section 4.a	A higher flow rate reduces the impact of sampling line related contamination on blank signals	

Table 5: Criteria for optimum tuning of the ion source/drift tube

lon source		
Primary ions purity	$[O_2^+ + NO^+] < 3\%$ of $[H_3O^+ + H_3O^+(H_2O)]$	
Primary ions distribution	$[H_3O^+(H_2O)] < 20\% \text{ of } [H_3O^+ + H_3O^+(H_2O)]$	

Field Operation

Checking for proper field operation

4. Field operation

a. Sampling

b. Operating conditions

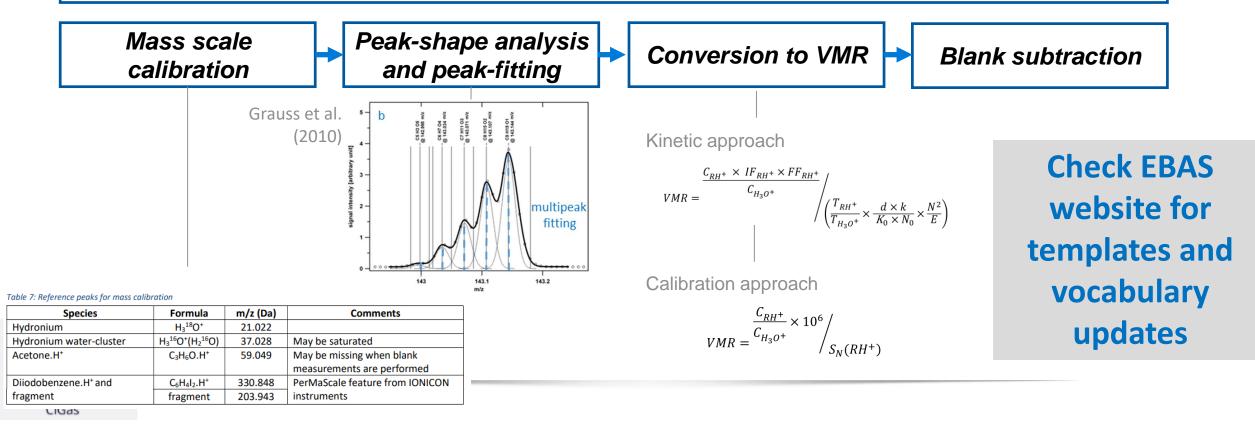
c. Checking for proper field operation

Build control charts of relevant metrics to ensure that instruments are

running well

Table 6: Control metrics for proper field measurements

Metric	Purpose	Criteria
H ₃ O ⁺ ion signal at m/z 21.022	Check cleanliness of reagent ion source and/or a change in detection sensitivity	Not lower than 70% of initial value at installation
$[O_2^++NO^+] / [H_3O^++H_3O^+(H_2O)]^*$	Check for reagent ions purity	As defined in Table 5
$[H_3O^+(H_2O)] / [H_3O^++H_3O^+(H_2O)]^*$	Check for reagent ions distribution	As defined in Table 5
<i>R_{FWHM}</i> (section 3c) & Peak shape	Check ToFMS tuning	R_{FWHM} not lower than 70% of initial value at installation
Blank values (sections 3a & 4b)	Check for leaks and/or contamination	Lower than 1.3 times initial values at installation
N_2H^+ ion signal at m/z 29.014	Check collision energetics in transfer region - N ₂ H ⁺ and CO ₂ H ⁺ only formed via	Minimize at selected ion- source/drift operating
CO_2H^+ ion signal at m/z 44.998	endothermic reactions in transfer system	conditions
Fragmentation reference species**		Deviation lower than 30%
Ex: Diiodobenzene - ratio of m/z	Check for abnormal ion fragmentation	from initial value at
203.943 over m/z 330.848		installation


* Ratios of transmission corrected signals. **Reference compounds continuously added to the drift tube such as diiodobezene in the PerMaScale feature of IONICON instruments

Data extraction: retrieval of ambient VMR & reporting

Provide a general 'step by step' procedure to process PTR-MS raw data

Software tools provided with PTR-MS (PTR-MS viewer or Ionicon Data Analyzer from IONICON Analytic GmbH, Tofware from TOFWERK) or by the scientific community (Toftool, PTRwid)

Additional PTRMS related activities

- Physical dedicated hands-on training to organize for small groups, or during upcoming intercomparisons with other CiGas units
- Possibility to organize intercomparisons (last one dedicated to VOC was for formaldehyde) & in 2019 for PTRMS within EUROCHAMP
- Operational for evaluation of working standards and target gas, in order to link the VOC measurement by PTRMS to primary standards and ensure the state-of-the art traceability to international scales
- Round-robin: send out a NPL PTRMS calibration standard, a dilution system, and/or an unknow target gas
- > Audit and Labelling (step 1a & 1b)
- > SOP for instruments equipped with new generation drift tubes ??

